US009183752B2

a2 United States Patent 10) Patent No.: US 9,183,752 B2
Nickell et al. 45) Date of Patent: Nov. 10, 2015
(54) TUTORIAL GENERATOR WITH AUTOMATIC 5,388,993 A 2/1995 McKiel et al.
CAPTURE OF SCREENSHOTS 5,395,242 A * 3/1995 Slyeetal.ccocvvvnennnne 463/1
5,395,243 A * 3/1995 Lubinetal. 434/118
. . . 5,432,940 A * 7/1995 Pottsetal. 719/320
(75) Inventors: Sffth Nickell, Cambridge, MA (US); 5442759 A * 8/1995 Chiangetal.cccccccovr...... 705/1
Diana Fong, Nashua, NH (US) 5481,667 A * 1/1996 Bieniek etal. .. 715/709
5,493,658 A * 2/1996 Chiang et al. ... 715/709
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) 5513308 A * 4/1996 Mori ...cooooiinnnn. ... 715/707
5,524,193 A * 6/1996 Covington et al .. 715/210
® ol : : : : 5,535,323 A * 7/1996 Milleretal. 715/707
(*) Notice: Subject.to any dlsclalmer,. the term of this 5535422 A * 7/1996 Chiang et al. .. " 215700
patent is extended or adjusted under 35 5.577.186 A * 11/1996 Mannetal. ... 715203
U.S.C. 154(b) by 1605 days. 5,602,982 A * 2/1997 Juddetal. T15/709
5,745,738 A * 4/1998 Ricardccoccoeinenn. 703/13
(21) Appl. No.: 11/160,901 5,816,820 A * 10/1998 Heinzetal. 434/118
6,020,886 A 2/2000 Jacober et al.
Tad. 6,021,403 A * 2/2000 Horvitzetal. 706/45
(22) Filed: Jul- 14, 2005 6,061,758 A * 52000 Reber etal. ..c.oven.. 711/100
(65) Prior Publication Data (Continued)
US 2007/0015118 A1 Jan. 18, 2007 Primary Examiner — Sam Yao
Assistant Examiner — Alvin Carlos
(51) Int.CL (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
G09B 19/00 (2006.01)
G09B 5/02 (2006.01) (57) ABSTRACT
GO9B 7/02 (2006.01) Screenshots on a computer display are automatically cap-
iyt tured to assist 1n building a tutorial to demonstrate the func-
(52) US.Cl . d to assist in building ial to d he f
C.PC G09B. 5/02. (2013.01); G098 7/02 (2013.01) tionality of one or more applications. In one possible
(58) Field of Classification Search approach, an event detector, such as an accessibility toolkit,
CPC ... GO09B 19/0053; GO9B 5/02; GOIB 19/00 detects when events are generated by the one or more appli-
USPC ... 434/307 R, 118, 350, 353; 7.15/7055 709 cations. The events may include, e.g., button clicks, windows
See application file for complete search history. opening or closing, drag and drop events, check boxes being
. checked, menus being pulled down or menu items selected,
(56) References Cited and so forth. Or, a program may monitor pixel changes on the
U.S. PATENT DOCUMENTS screen to detect when changes occur in.the images ger}era.ted
by the one or more applications. A tutorial builder application
4,689,022 A * 8/1987 Peersetal. 434/307 R automatically captures an image when the event or image
4941,829 A * 7/1990 Estesetal. 434/118 change is detected, edits the captured image such as by pro-
5,103,498 A % 4/1992 Lanieretal. .. « 706/58 viding a focus on the changed portion, and provides the edited
5,109,482 A * 4/1992 Bohrman 715/723 . in a tutorial wind Related text lsob t f
5179654 A * 1/1993 Richards et al. . 715/708 image in a tutorial window. Related text can also be automati-
5230628 A * 7/1993 Kanckoetal. 434/118 cally generated.
5,239,617 A * 8/1993 Gardner et al. 706/11
5,388,251 A * 2/1995 Makino etal. 714/57 30 Claims, 35 Drawing Sheets

Launch tutorial builder application 2

Tutorial builder application registers to receive 1 2/
event information from event detector

Applications register to transmit
event information to event detector

J’ 2z0

l User i with

225

] Display images on user interface]/ 230

hange in pixel
values detected

Generate text based
oh detected change

Display edited image with generated - 470
text in separate window

US 9,183,752 B2

Page 2
(56) References Cited 6,909,874 B2* 6/2005 Holtzetal. 434/362
6,944,624 B2* 9/2005 Ortonetal. 707/102
U.S. PATENT DOCUMENTS 6,981,040 B1* 12/2005 Konig et al. . 709/224
7,033,179 B2* 4/2006 Harriman 434/118
6,067,538 A * 52000 Zorbaetal. ..., 706/47 7,047,498 B2* 52006 Luietal ... 715/762
6,099,317 A * 82000 Bullwinkel et al. 434/118 7,052,277 B2* 52006 Kellman ... - 434/118
6.170.065 B1* 112001 Kobata et al. ... A 7,360,159 B2* 4/2008 Chailleux . .. 715/709
6,219,047 B1* 4/2001 Bell ... 715/705 7,620,895 B2* 11/2009 Adkinsetal. 715/709
6,233,570 B1* 5/2001 Horvitz et al. . 706/11 7,882,434 B2* 2/2011 Slotznick et al. ... 715/710
RE37431 E * 1012001 Lanier ctal. . " 706/58 2001/0039002 A1* 11/2001 Delchanty 434322
6,384:843 Bl* 5/2002 Harel 715/762 2002/0031756 Al* 3/2002 Holtz etal. 434/362
6,388,665 B1* 5/2002 Linnett et al. . 345/473 2002/0098468 Al* 7/2002 Barrett et al. 434/322
6404441 BL* 62002 Chailleux ... 715/704 2002/0107681 Al1* 82002 Goodkovsky . . 703/22
6.453.254 B1* 9/2002 Bullwinkel et al. 702/81 2002/0118220 Al* 82002 Luietal. 345/709
6,514,085 B2* 2/2003 Slattery et al. ... 4347335 2002/0127531 Al* 9/2002 Kamens et al. ... 434/350
6.532.023 BL* 32003 Schumacher ctal. ... 715/704 2002/0168616 Al* 11/2002 Chanetal. ... e 434/118
s . chumacier et a 2003/0152904 AL* 82003 DOty, Jr. coovrrrrrrerrrrrrn 434/350
6,549,216 Bl 4/2003 Schumacher etal. 715/704
* - 2004/0199901 Al 10/2004 Chapman

6,573,915 Bl 6/2003 Sivanetal. 715/781 %
% 2005/0196730 Al 9/2005 Kellmanc.c....... 434/118

6,634,887 Bl 10/2003 Heffernan et al. .. 434/322 «
6692256 B2 22004 Chan ef al 2005/0227215 Al* 10/2005 Bruno et al. .. 434/322
6.697.088 BL* 22004 Hollander ... 715/744 2005/0278629 Al* 12/2005 Chailleuxcccocceonenne 715/704

6,807,535 B2* 10/2004 Goodkovskycccccevewnne. 706/3 * cited by examiner

U.S. Patent Nov. 10, 2015 Sheet 1 of 35 US 9,183,752 B2

e " o .
— ; 140
m seial EBufider L L [
1 lreadion
_frelveher | At | A g it || Tect
15N Terk Generaor /\40@1{[# #o EdiFor
1§l rmage Edlfhor |
Fi
~ Prxel Event 150
152 Mamii”or Detector 154

Off'fahkj Syaﬂlﬂm

\

User Input | |)5 rsufa
162%™ eDevrtlz DI}PIQ/ 16 160
Heardware

U.S. Patent

Nov. 10, 2015 Sheet 2 of 35

US 9,183,752 B2

[Eunch tutorial builder application .f"‘oo

4

tTutoriaI builder application registers to receive?» 20

event information from event detector

I

~ Applications register to transmit
event information to event detector

2z0

/

.\

User interacts with applications

}-r 225

Event detected?

\
Display images on user interface

|
X

240

P {

Capture image on the user interface

“Generate text based
on detected change

260

Edit the captured image }/ 255

230

245

/)hange in pixel

values detected? -~
/

250

Display edited image with generated
text in separate window

270

FIG. 2

U.S. Patent Nov. 10, 2015 Sheet 3 of 35 US 9,183,752 B2

ho

ommand received to edi
M_ggzm tutorial wde

P
DA
3 3

ﬁsplay image editing menu |

320 : 4 :
\F{Ecgve user selections |

330 ’
Update display of image in tutorialj

window

FlG. 3

U.S. Patent Nov. 10, 2015 Sheet 4 of 35 US 9,183,752 B2

ye)

va

Image editing menu:

a) Select one:
[] Display full screen
[] Display only changed objects and related parent objects

[] Display only changed objects, but not any parent objects

| b) Select one:
[1 Crop out changed regions

[] De-emphasize unchanged regions

c) Choose:
Yes [] No[]- replace multi-option windows in tutorial after an

option is selected

i

i d) Apply edit selections to:

[]selected image

‘[]allimages in tutorial

[]selected and subsequent images

Fle.H

& | aes

US 9,183,752 B2

Sheet 5 of 35

Nov. 10, 2015

Tl

M BT TIROT 26T o ifes

L]

ClE]
-
U
5 T R Sl
11Fa 2%
[N

S FHNTEIE

U.S. Patent

noz® ‘wedrd @ .0f B G & @ dweq swg Eﬂnﬁ@b

US 9,183,752 B2

Sheet 6 of 35

Nov. 10, 2015

U.S. Patent

slieg Qg s R .

i iiNgini

°zy — B L O 2o

i

l3p[ng ek oing. =

-

083

US 9,183,752 B2

Sheet 7 of 35

Nov. 10, 2015

U.S. Patent

ONN.J
s

TaAlE oL,

g M

\nﬂ QoL

US 9,183,752 B2

Sheet 8 of 35

Nov. 10, 2015

U.S. Patent

g ol
a & | doo I TR
B

1L Rl 5L FH55

LG ETE]

B THEEAI

4]

i

LN
%

:

Pal
i

BReER

i

L
L

d

HTHEED

@T"TRET 25T W =5

AR HUHIR

d

EEL
-

w

oo et e

113 e

i
=1

LR S A (SR 4 oD

Em%%sz e

sy O

@ demEeq SRRl | SveEERlEEy o

US 9,183,752 B2

Sheet 9 of 35

Nov. 10, 2015

s & | oo [=g GRS 3

), HRALOIFHETRY

; @ TEE
goofous|
ol T

iiiii

&
DT U

G TR @
D i
L

1]
GO

fymtHREEE o

Fill)

ey uny §

Hpvh EpeeEeG HTIESD s
. m ¢ SEelwEsi @Q
rlkrl_L Hm ¢ SEEA PR Y
EimEfal TelljEd \ 4 FupnrEbe S
e
sy TEGER <
i

1 le

U.S. Patent

Wi 0% S 65 By s _u@m_ 5

US 9,183,752 B2

Sheet 10 of 35

Nov. 10, 2015

U.S. Patent

L

PE{ES [EURd ZeHE) EUp

oz 7

g] o

US 9,183,752 B2

Sheet 11 of 35

Nov. 10, 2015

U.S. Patent

!/ D)A

| Id oo [W= pmuiineg peresifi > | 111 Sotd U T EHETang || D YL =

@ﬁ%@s
), el oL =ETEg S—
Fackepeab i) Ws. : (T T &5, 25T, 108 IfeE

-

ST FUTH

. OYTEsR 091 M

G
7 SN 13t a

B

D wl
o
=]
3]

ot]

B
Pty
=

S
B
&

MEFNE AL

| b TuEmmeq FYEA 5
d : TES wEg BN

s GPER G ;o Iy
9 % ' ® B89 Q
: E B :

XISl p3

[el

B 6 @ 9wma swmd sopiity Mw“

TEE A 7T] e Y SR
‘ﬂoo:

US 9,183,752 B2

Sheet 12 of 35

Nov. 10, 2015

U.S. Patent

B o TR

LA] 6 TR
TR o mﬁwm:w e
. EErE] o il %
7 mumam%w%ﬁ_

,,,,,

ﬂ..m @ Ho F o= T [:M

Hapling Eiom,

| o9/

|- Q51

\ﬂoow\

US 9,183,752 B2

Sheet 13 of 35

Nov. 10, 2015

U.S. Patent

€] 0]

o =5 | oEo I Yigsl - 1 AlsaliBg PRSI 25 | = SEOUEDEPES [¢
Gy

£ Gz

L

B THiEgiAY

U4 0]

g

{

Hbook opegueg
_
TIPS
-

TENGETR

-

3

i

o], FRIL 6 FHHag

G TRIT 26T 0a s
s

Kl

T2 TR

US 9,183,752 B2

Sheet 14 of 35

Nov. 10, 2015

U.S. Patent

a :\;J
(S e EXIG), S JRIS)

osi | &

X0 TpIG oL

RIS

| 0K

R

o0k !

US 9,183,752 B2

Sheet 15 of 35

Nov. 10, 2015

U.S. Patent

lilsl olo o

91 914

([=B~ 7 yiemieg FEAESUN 2 | W 20W) 6 CRERFERIE || B B 2 B

LG ST

By HRaRA

T Sl

SizRfoid TP

Iy

S BRlTERd

WAZT T EEm @05 O

Bl FEL AL Hécag ey
g i -
155 B Vg 28 s

35 1= e ol
P A FELY

oLy —— ‘

/
094/ [|[=5F|

S

Ferepg eny | Supey speng |
e

e | &
EBM

|
2 £ E
i) o

dmpeg @r;ﬁ%ﬂ%g@lmm
P @E_%ﬁm@ﬂ

T

S s

presun) i

=

osel 7

TG

m&_ aﬂz
deR mﬁps%m Sppel EEH& ﬁﬁ am m_m
1pal - T WEMITIE FRARSUR) %

L
E
@
S

K oog/

US 9,183,752 B2

Sheet 16 of 35

Nov. 10, 2015

U.S. Patent

J?s T L WS, e —— e =

EN AR e, EYR R

osil

S (S

09 ¢l
0191
1 suEdls
[HESTE) AepUln SEWY
o191 —

- 05¢

L asll

US 9,183,752 B2

Sheet 17 of 35

Nov. 10, 2015

U.S. Patent

iD«l olool

21 914

| me=B-T mmimseg peaesin 1T G0 PR || JUD A s E

LG ST

a
x
e
3
2

S
g

iledls

g
3

Fupazn
B)L Rl Gl BEE S
m

aLf)
J

|

SHRHEW SUWEE

o] SRagmAng

EE

Upf mwenumog Spel yorss VR WS SE

WS = T EEIREEG PRReS

US 9,183,752 B2

Sheet 18 of 35

Nov. 10, 2015

U.S. Patent

02911

Q@J

Y] VERIG, AR PR i

SUEEE

0191 —~

0sel e

US 9,183,752 B2

Sheet 19 of 35

Nov. 10, 2015

U.S. Patent

Li 914

ApsfS - T WD pEARSUR) 2 |

=Bl s [

VAo e

-

B HERA

o
s

A]

8] YRl Sl HjHtag

wsa
X g
urfuer
‘o Ty

.

BT TRETEET 1o RE

=0

7 sW

T2 TV

US 9,183,752 B2

Sheet 20 of 35

Nov. 10, 2015

U.S. Patent

05¢l Iz

Q102 1
SESEP
o] UG I SN,

asil]

US 9,183,752 B2

Sheet 21 of 35

Nov. 10, 2015

U.S. Patent

)7 9]

|l mlaoo [-y wsweq pEaEsi, = |1 1T 'Bo 0 e HERIp | EIEEIVE

Bupsremig
), HElL 5] HdbRS .
EG ST R T m m BT T RDT 268 e e

gy
&
SRS B

@ THRGRADN m

BEHH, ™

i T e R
i) g B
#pub
-
ezl e

M Eﬁﬁ | preep e1TeH
| & TaEnmseg pren.

. bRy epup

; Ipd . sEg wdp ARy

7 £T183 T

ont

FHE] FRlEIE N

ml- a1
-

=

528

oo\ T

U.S. Patent Nov. 10, 2015 Sheet 22 of 35 US 9,183,752 B2

& “
[i!
L1
. e |
1
- E

g

dhs=s

FlG. 22

Z2 200 y
i[der;
5 A0 sQ
I}
>

il Buj

US 9,183,752 B2

Sheet 23 of 35

Nov. 10, 2015

U.S. Patent

g 914

== O I e~ 1 Jiiieg poresi o | el [
FpEaz

o4, YRLL 6L HieEd I

rEs T e W"H._ TR RS

[

B THERASY

{]

=eh

]

&80 AyEdmeEe

)

e L

PR
i
&
el TR

i

-

il GEUTETEH

—

agll~

¥

UL IETE TR R
aLYELOLINES F |
RS
FaEApEE) Y
BITRSI T

SHESHNES

éﬁm@
Tyl g |l
iEsed |

SHINS

[oyliis]
SRS
7 SN IP2'T
M
01¢T M
D
N WY g R M GRS

EHE

\AOOMN

US 9,183,752 B2

Sheet 24 of 35

Nov. 10, 2015

U.S. Patent

= _NF%E _ ﬁ__ jjm

hZ 9]

|

YpE - 1 WEURaeg PRSI S |

=R SIS [|

ol JEL 6L HEEag

LTI R

J

B THEGRADY

s fgedemEEe

e =

Foedh EpEEpOG

10y

exsalfaly T

H L

SEH TEEERA

L

as

EErsz

-

T TN 25T 1o W=E
e
GHTEZE S

-

GHD

gl

¥ 5N iE2'TH

FRERRIEEEY § |

ot

eLyELOLIEEd F |

& | s
LI

(BT

\ﬂoOrN

US 9,183,752 B2

Sheet 25 of 35

Nov. 10, 2015

U.S. Patent

oy

Q141
5ty

SISy

fRit
EHEHUAE:

LU

XD '=pIng [Elfoinll.

N 0057

0'ht

US 9,183,752 B2

Sheet 26 of 35

Nov. 10, 2015

U.S. Patent

ko< plool

92 DA

[WEE=1 emosy reaesin,

Pigeter oo |

d

@A

L
L
HERE — CEwsEREd
L

WA T BN Db) :

o4 YRL 6L HHoag

_m”

0592

a e

Bupwoz)

2 | SR FEREEHRYUE. ; | B L 2>

AT 76T Mo U
==

AT FUTH

Gy

7 sm

L 1€ "1 ﬁ

orww 5997 0937
)

3

. L {

L

e | | e

6 dpusvEeEd 2 [SSmm

BT 292) S oven) SEfEN EAes JeR oA 4
2BUSER 819/ oI WEWRDDE @

FRARSUR), WEMRE @) S=EURIp BIRERRS

S L1%H

Wy . @Ey e

%ﬁgﬁﬁgm%ﬁﬁg%wﬁaﬁﬁﬂﬂw

ﬁQDwN

BT 6 @ oo me oy 3

US 9,183,752 B2

Sheet 27 of 35

Nov. 10, 2015

U.S. Patent

ajst) 2
1 S, —

Miiing

EER Toplaedoml.

NoorLz

US 9,183,752 B2

Sheet 28 of 35

Nov. 10, 2015

U.S. Patent

22 DA

0 blag | B - oo s, 2 [T G0 0 TR ;| TR
Bumrzay
o) HElL 6 deRd >
s — N

-

@#ﬂ@: mg UaiEs

STHEA [— ..
@ B & 5N g 1
) 0L97 59972 0992
H [=Sy || rwog | [Eswamesn)
i s %@m@@aﬂ_ éﬁﬁgﬁ\ﬁ
@F 32 S ey S ERES } 9 RE 1Y
— Q52T 2BUSeP BIRRE o WEWHSEE @
TRl | FERESUR, WENFDE) @) StEUsyD B BREE N\
] = hey
a4l [& 1aemeg e, 5|
wEdy AR

£ 1

ny o Ry -_E:

% : o ® B °a O

i IR SEeT E@ﬁ PER S um
el - T WENREO PEREEU), e

FQOMN

US 9,183,752 B2

Sheet 29 of 35

Nov. 10, 2015

U.S. Patent

| —01hT
01671 J
TG},
{BE[ES FEN Sk B may)
0L
2\ _
SARITER BRG], TRIE "areikie L 0692
ogl 7
g Rp TR | .
Tﬁ@@ apling (el m,,w
ﬂg@@ z

US 9,183,752 B2

Sheet 30 of 35

Nov. 10, 2015

U.S. Patent

El===

Qg "9/A

B HEgRA

]

SEEP Haalid

&

durptyaEss

—

=

Al

el

-

Y SENGERH

Ld

o1 }RLBLFHERS

GETRET 260 16 1fsE |

gl

[
i

@
Sz S

-~ 4

=

e

oloc

AT
%5 s :

US 9,183,752 B2

Sheet 31 of 35

Nov. 10, 2015

U.S. Patent

L0697

\

S5

0 00¢ \f

affieg) arpy SR | o

r@@,m mxwm_xae%ﬂ% ..

Fsiw

US 9,183,752 B2

Sheet 32 of 35

Nov. 10, 2015

U.S. Patent

2% 971
i O O
Bz w
Bl L 6L R |
T] ” H MTETTR R |
[e |
m i p— :
ﬂ ml_m
b g e
YRR
[
EEE T
L] o
- € .
. N QG

G S

2 o TR =

g Lo

erzEfolgy g

Ld

L i)

e

Wie 2% "S2 94 P

B L & @ ®amg =0d Sy)

US 9,183,752 B2

Sheet 33 of 35

Nov. 10, 2015

U.S. Patent

007t ,

. T _m_<_33 ;

R

o]

00 g ¢

o0log

US 9,183,752 B2

Sheet 34 of 35

Nov. 10, 2015

U.S. Patent

o= | aEc

e 014

|

e SR £ |

~TEUESAIDES =) |5

Bl U 6L FHTRY
WAy e) =
[l sl EElERE
SOHER, Segald
o &
i Sl 0¢ \ﬂ ¢ w
— 4 WE_D__ _
FhwE opEEmRG
- L
el EE
g L
gEmy SewsEid
“liass G G 08 B

US 9,183,752 B2

Sheet 35 of 35

Nov. 10, 2015

U.S. Patent

S, JPIE ERROE

007 ¢ 1

ANt

fi[En]
=

| 010%

aShe
L~

X0 TapIE Mol

ke

A
o

N

N 00s5¢

US 9,183,752 B2

1
TUTORIAL GENERATOR WITH AUTOMATIC
CAPTURE OF SCREENSHOTS

FIELD OF INVENTION

The present invention relates to a technique for automati-
cally capturing screenshots on a computer display to assist in
building a tutorial, such as for demonstrating the functionality
of one or more applications.

DESCRIPTION OF RELATED ART

Technology users are often confused and, in turn, frus-
trated by poorly written and illustrated tutorials associated
with a product they wish to setup, or a task they would like to
complete. Confusion arises from complicated text and
screenshots that do not correspond with written directions.
Moreover, screenshots included in tutorials are usually not
inclusive of all the steps the user has to go through to complete
a particular task. The omission of screenshots, or, rather, the
incorporation of only selected screenshots, can also confuse
the user by creating a disconnect between the directions and
illustrations.

The creation of tutorials can also be time-consuming and
frustrating. Specifically, the creation of a tutorial involves
setting up and taking screenshots, writing directions and
explanations, storing, tracking, and combining images and
text, and laying out the images and text to finally publish the
tutorial on an intranet, for instance, or as an application tuto-
rial. While the tutorial can be improved by having the tutorial
writer prepare better instructions, taking more screenshots
and better arranging and managing the instructions and
screenshots, this is very time consuming and will sometimes
discourage the creation of helpful tutorials.

In another approach, Flash/QuickTime animated tutorials
have been used. These are animated tutorials that have text
and/or voice explanations along with animated cursors and
changing screenshots to guide users through a particular task.
However, this approach is often unsatisfactory as well
because it may not stop or pause to allow the tutee to complete
the steps, or the tutorial may pause or stop at points that are
not optimally helpful to the tutee. In another approach, Flash/
QuickTime animated tutorials have been used. These are
animated tutorials that have text and/or voice explanations
along with animated cursors and changing screenshots to
guide users through a particular task. However, this approach
is often unsatisfactory as well because it may not stop or
pause to allow the tutee to complete the steps, or the tutorial
may pause or stop at points that are not optimally helpful to
the tutee.

BRIEF SUMMARY OF THE INVENTION

The present invention addresses the above and other issues
by providing a technique for automatically capturing screen-
shots on a computer display to assist in building a tutorial,
such as for demonstrating the functionality of one or more
applications. The technique provides users who are preparing
tutorials, such as help desk personnel and administrators,
with an easier and better way of creating more comprehensive
tutorials that eliminate the confusion which arises from com-
plicated text and spotty inclusion of screenshots, while also
reducing the time and effort required to prepare the tutorial.
The users can focus on creating the tutorial rather than having
to take screenshots and manage those images in addition to
synchronizing them with text. Moreover, the user can output
the tutorial to a file or web page for subsequent viewing by

10

15

20

25

30

35

40

45

50

55

60

65

2

one or more tutees, and is generally applicable to any purpose
that benefits from the automatic capture of screenshots.

In one aspect of the invention, a computer-implemented
method for building a tutorial includes automatically captur-
ing at least one image that is generated by at least one appli-
cation with which a user interacts, and that is displayed on a
user interface, and building a tutorial using at least a portion
of' the at least one captured image.

In another aspect, a computer-implemented method for
automatically capturing images includes detecting a change
in images that are generated by at least one application with
which a user interacts, and that are displayed on a user inter-
face, automatically capturing at least one of the images
responsive to the detecting of the change, and building a
tutorial using at least a portion of the at least one captured
image.

In a further aspect, a computer-implemented method for
building a tutorial includes detecting an event that is gener-
ated by at least one application with which a user interacts,
automatically capturing, responsive to the detecting of the
event, at least one image that is generated by the at least one
application, and that is displayed on a user interface, and
building a tutorial using at least a portion of the at least one
captured image.

Inyet another aspect, a computer-implemented method for
automatically capturing images includes automatically cap-
turing at least one image that is generated by at least one
application with which a user interacts, and that is displayed
on a user interface, automatically editing the at least one
captured image to provide at least one edited image, and
building a tutorial using at least a portion of the at least one
edited image.

Corresponding program storage devices are also provided.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, benefits and advantages of the
present invention will become apparent by reference to the
following text and figures, with like reference numbers refer-
ring to like structures across the views, wherein:

FIG. 1 illustrates an architecture for implementing a tuto-
rial builder application;

FIG. 2 illustrates a flow chart of a method for implementing
a tutorial builder application;

FIG. 3 illustrates a flow chart of a method for editing
images in a tutorial builder application;

FIG. 4 illustrates an image-editing menu for use in a tuto-
rial builder application;

FIG. 5 illustrates a desktop view of a user interface;

FIG. 6 illustrates a tutorial builder application window,
where a user enters a command to begin recording;

FIG. 7 illustrates the tutorial builder application window, in
which a screenshot of the desktop view of FIG. 5 is automati-
cally captured and displayed;

FIG. 8 illustrates the desktop view of the user interface,
where the user pulls down a first level of a menu;

FIG. 9 illustrates the desktop view of the user interface,
where the user selects a second level of the menu of FIG. 8;

FIG. 10 illustrates the tutorial builder application window,
in which a screenshot of the desktop view with the pulled
down menus of FIG. 9 is automatically captured, but only the
pulled down menus are displayed;

FIG. 11 illustrates the desktop view of the user interface,
where a new, top level window has opened based on selection
of a menu item from the second level menu of FIG. 9;

US 9,183,752 B2

3

FIG. 12 illustrates the tutorial builder application window,
in which a screenshot of the desktop view with the top level
window of FIG. 11 is automatically captured and displayed;

FIG. 13 illustrates the desktop view of the user interface,
where the user selects the “open” toolbar button in the top
level window of FIG. 11;

FIG. 14 illustrates the tutorial builder application window,
in which a screenshot of the desktop view with the top level
window of FIG. 13 is automatically captured, but only the top
level window is displayed;

FIG. 15 illustrates the desktop view of the user interface,
where a new, second level window has opened based on
selection of the “open” toolbar button in the top level window
of FIG. 13;

FIG. 16 illustrates the tutorial builder application window,
in which a screenshot of the desktop view with the top level
and second level windows of FIG. 15 is automatically cap-
tured, but only the top level and second level windows are
displayed;

FIG. 17 illustrates the desktop view of the user interface,
where the user selects the “Cancel” button in the second level
window of FIG. 15;

FIG. 18 illustrates the tutorial builder application window,
in which a screenshot of the desktop view with the top level
and second level windows of FIG. 17 is automatically cap-
tured, but only the second level window with the selected
“Cancel” button is displayed;

FIG. 19 illustrates the desktop view of the user interface,
where the top level window remains after the second level
window is closed based on selection of the “Cancel” button in
the second level window of FIG. 15;

FIG. 20 illustrates the tutorial builder application window,
in which a screenshot of the desktop view with the top level
window of FIG. 19 is automatically captured, but only the top
level window is displayed;

FIG. 21 illustrates the desktop view of the user interface,
where the user types in text in the top level window of FIG. 20;

FIG. 22 illustrates the tutorial builder application window,
in which a screenshot of the desktop view with the top level
window of FIG. 21 is automatically captured, but only the
first level window with the typed in text is displayed;

FIG. 23 illustrates the desktop view of the user interface,
where the user pulls down a menu from the first level window
of FIG. 21;

FIG. 24 illustrates the desktop view of the user interface,
where the user selects the “quit” menu item from the menu of
the first level window of FIG. 23;

FIG. 25 illustrates the tutorial builder application window,
in which a screenshot of the desktop view with the first level
window, menu and selected menu item of FIG. 24 is auto-
matically captured, but only the menu and selected menu item
are displayed;

FIG. 26 illustrates the desktop view of the user interface,
where an alert window, with a “save” button highlighted, is
displayed based on selection of the “quit” menu item in the
menu of FIG. 25;

FIG. 27 illustrates the tutorial builder application window,
in which a screenshot of the desktop view with the first level
window and alert window, with the “save” button selected, of
FIG. 26 are automatically captured, but only the first level
window and alert window are displayed;

FIG. 28 illustrates the desktop view of the user interface,
where the alert window of FIG. 26 with the “Close without
Saving” button is selected;

FIG. 29 illustrates the tutorial builder application window,
in which a screenshot of the desktop view with the first level
window and alert window of FIG. 28 are automatically cap-

10

25

35

40

45

55

4

tured, but only the first level window and alert window, with
the “Close without Saving” button highlighted, are displayed,
in place of the corresponding display of FIG. 27;

FIG. 30 illustrates the desktop view of the user interface,
where the top level window and alert window of FIG. 29 are
removed based on selection of the “Close without Saving”
button;

FIG. 31 illustrates the tutorial builder application window,
in which a screenshot of the desktop view of FIG. 30 is
automatically captured and displayed;

FIG. 32 illustrates the desktop view of the user interface,
where the “theme mockups” folder of FIG. 30 is selected by
the user;

FIG. 33 illustrates the tutorial builder application window,
in which a screenshot of the desktop view of FIG. 32 with the
“theme mockups” folder selected is automatically captured
and displayed;

FIG. 34 illustrates the desktop view of the user interface,
where a new, top level “theme mockups” window has opened
based on selection of the “theme mockups™ folder of FIG. 32;
and

FIG. 35 illustrates the tutorial builder application window,
in which a screenshot of the desktop view of FIG. 34 with the
“theme mockups” window is automatically captured and dis-
played.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 illustrates an architecture for implementing a tuto-
rial builder application. In one possible approach, a tutorial
builder application 110 can be used to generate a tutorial that
demonstrates the functionality of one or more other applica-
tions, such as application #1 (120) and application #2 (130).
The applications which are the subject of the tutorial can
include, e.g., a suite of office programs, such as word pro-
cessing programs, spreadsheet programs, presentation soft-
ware programs, and drawing programs, as well as computer-
aided design (CAD) programs and the like, or essentially any
other type of application or program, independently or in
conjunction with one another. That is, the invention is not
restricted to generating tutorials demonstrating a single appli-
cation, but can demonstrate tutorial flows across the entire
operating environment. The tutorial builder application 110
can include a text generator module 115, described further
below, that runs in the same process or program as the tutorial
builder application 110, and which is used to automatically
generate text for the tutorial that is built by the tutorial builder
application 110. The tutorial builder application 110 can also
include an image editor module 118, described further below,
that runs in the same process or program as the tutorial builder
application 110, and which is used to automatically edit cap-
tured images for use in the tutorial. Additionally, a text editor
140 may be a conventional program such as the Windows
Notepad or Emacs on Unix that allows the user to enter text.

An operating system level 150 of the architecture may
include a pixel monitor 152 for determining when changes
have occurred in the images on the user interface that are
generated by the applications that are the subject of the tuto-
rial. The pixel monitor 152 can detect changes in the dis-
played images by monitoring the images themselves. For
example, the values of pixels that make up the user interface
can be monitored so that a change in pixel values in a portion
of'the user interface can signal a change in the image, thereby
triggering an automatic image capture by the tutorial builder.
Furthermore, a bounding box or other contour can be defined
around the changed pixels for use in editing the captured
image, e.g., to crop around the changed pixels for display in

US 9,183,752 B2

5

the tutorial. The pixel data can be accessed, e.g., from the
applications that generate the images on the user interface.

The operating system level 150 of the architecture may also
include an event detector 154 for detecting events that are
generated by the applications that are the subject of the tuto-
rial. For example, the event detector 154 may use an accessi-
bility toolkit (ATK) which receives information from appli-
cation #1 (120), application #2 (130), and the text editor
application 140, to detect events such as a window opening or
closing, a user clicking on a control, a user selecting an item
in a menu, a user entering text into a control, a window being
moved, resized, maximized or minimized, or a control or an
icon being dragged from one point to another. The applica-
tions 120, 130 and 140 can have a library for ATK automati-
cally loaded that automatically communicates events to a
central ATK program in the event detector 154.

A control refers to, e.g., an object in a window or dialog box
that allows a user to interface with the application and oper-
ating system. Examples of controls include push-buttons,
scroll bars, radio buttons, pull-down menus, dialog boxes,
pop-up windows, pull-down menus, icons, resizable window
edges, progress indicators, selection boxes, windows, tear-off
menus, menu bars, toggle switches and forms. Information
from the event detector 154 can be automatically loaded into
the text generator module 115, e.g., during start up of the
computer.

One example of an ATK is that developed by GNOME, a
Unix and Linux desktop suite and development platform, for
management of assistive technologies, which are added to
computers to make them more accessible to the disabled. The
assistive technologies may include, e.g., screen magnifiers,
screen readers, on-screen keyboards, keyboard enhancement
utilities for people who have trouble typing and controlling a
mouse, speech recognition programs, and alternative input
devices such as smaller or larger keyboards, eye-gaze point-
ing devices, and sip-and-puff systems controlled by breath-
ing.

The event detector 154 can therefore provide program-
matic access to a significant amount of information regarding
controls, e.g., windows, menus, buttons, and so forth, which
generate events when there are changes in the displayed
images. For example, the event detector can be configured as
a tree of objects which each have properties. For instance,
objects may indicate that a display contains a window, a
window contains controls, a control contains other controls, a
control contains text, and so forth. The properties may indi-
cate that a button has a title or label, a check box is in a
checked or unchecked state, and so forth. Moreover, the pro-
gram information maintained by the event detector 154 canbe
used by the text generator module 115.

For example, pseudocode that could be used by the text
generator module 115 is as follows:

receive__event(eventGenerator) {
if (eventGenerator.type == ‘button’) {
buttonLabel = button.label;
if (eventGenerator.buttonType == ‘toggle’) {
buttonType = “toggle button”

} else {

buttonType = “button”

generatedText = “Click on the “ + buttonType + ” entitled ” +
buttonLabel;
} else if (eventGenerator.type == ‘menu’) {
generatedText = “Select menu item ” + eventGenerator.menulLabel;
}else.... etc

10

15

20

25

30

35

40

45

50

55

60

65

6

Thus, if an event type of “button” is generated by the
application #1 (120), for instance, the event type is detected
by the event detector 154 and provided to the text generator
module 115. The text generator module 115 can then generate
text accordingly, as illustrated in further detail below.

A combination of techniques for determining when to trig-
ger the automatic capture of an image, such as both event
detection and pixel change detection, can also be used.

Hardware 160 in the architecture of FIG. 1 can include a
user input device 162, such as a mouse, which is operated by
the user to interact with the applications 110, 120, 130 and
140, and a display device 164 for providing a user interface
which displays the images generated by the applications 110,
120, 130 and 140.

FIG. 2 illustrates a flow chart of a method for implementing
a tutorial builder application. At block 200, a user who is
preparing the tutorial launches the tutorial builder applica-
tion. This can be achieved in the same way that other appli-
cations are commonly launched. For example, in a desktop
environment, the user can click on a “tutorial builder” icon on
the desktop, or the user can click on a executable “tutorial
builder” file. At block 210, the tutorial builder application
registers to receive event information from the event detector
154, when used. This allows the tutorial builder to receive
event information from the applications 120, 130 and 140, for
instance. At block 220, the applications 120, 130 and 140
register with the event detector 154, when used, to transmit
event information to it. At block 225, the user interacts with
the one or more applications that are to be the subject of the
tutorial. Advantageously, once the tutorial application has
been launched, the user can simply interact with the one or
more applications normally, such as by using the user input
device 162, without interference by the tutorial application.
The user typically will desire to demonstrate a specific func-
tionality of the applications, such as specific features or
sequences of commands, for the tutorial.

At block 230, images are displayed on the user interface.
The images can be generated by the applications based on a
direct response to an input by the user, such as pulling down
a menu to select a menu item, which in turn results in a new
window being opened, or based on actions that are initiated by
the applications, such as displaying a status message, or a
clock-driven, reminder message, e.g., “upcoming meeting at
3 pm”. Again, these are images that are normally displayed by
the one or more applications. Further details regarding an
example series of images are discussed below. At block 240,
if an event is detected by the event detector 154, or if there is
a change in the image based on a detected change in pixel
values by the pixel monitor 152, for example, at block 245,
the current image is automatically captured (block 250) with-
out requiring a specific capture command from the user. For
example, an image file, e.g., in a GIF or other suitable format,
may be stored to a designated tutorial file location. The cur-
rent image can then be automatically captured, e.g., as a
screenshot.

Atblock 255, the image may be automatically edited by the
image editor module 118, e.g., without requiring a specific
edit command from the user. For instance, the images may be
edited to provide a focus on a portion of the captured image,
such as the portion that has changed in the current image
relative to a previous image, as determined by the pixel moni-
tor 152, for instance, and, optionally, related portions. For
example, a focus may be provided for a new window in an
image and related, parent windows, if any. Or, a focus may be
provided for a new pull down menu in an image and related
parent menus, if any. When the image capture is triggered
based on the generation of an event, the captured image may

US 9,183,752 B2

7

be edited to provide a focus on a portion of the captured image
from which the event originated and, optionally, related por-
tions. In the above examples, the new window or menu may
be the portion of the captured image from which an event
originated.

Furthermore, the focus may be provided in various ways.
For example, the captured image may be edited by cropping
out a background portion of the captured image for which
there is no focus. Or, the captured image may be edited by
de-emphasizing a remaining portion of the captured image,
such as by darkening the remaining portion, desaturating at
least one color channel of the remaining portion, blurring the
remaining portion, and/or overlaying a partially transparent
shape over the remaining portion. An edited version of the
image, which is provided in the tutorial, may be stored sepa-
rately from the unedited version to enable the user to subse-
quently change the editing of the image. Editing of captured
images is discussed and illustrated in further detail below.

Atblock 260, text may be generated to accompany each of
the captured images, as discussed previously, and as illus-
trated further below. For example, the text generator module
115 may generate text, as discussed above, based on the
detection of events generated by the one or more applications
or based on the detection of changes in the displayed images
on the user interface. The text may be stored in the designated
tutorial file location so that it appears with the corresponding
captured, edited, images in the tutorial.

Atblock 270, the edited image and the corresponding text
are displayed in a separate tutorial window. In one possible
approach, the tutorial window is overlaid on top of the user
interface on which the one or more applications are running.
In another approach, a multi-screen display is used, and the
tutorial window is provided on a separate screen. Advanta-
geously, the user can monitor the tutorial as it is built to
confirm that the captured images and generated text are sat-
isfactory. The user can enter commands to manually edit the
automatically edited images if they are not satisfactory, as
well as entering commands to adjust the automatic editing
that is applied to some or all of the captured images. Further-
more, the user can edit the automatically generated text such
as by clicking into a control such as a text box in which the
text is provided, and typing in the desired changes. However,
it is not necessary to display the tutorial as it is being built.
Instead, the user may view the tutorial after it has been com-
pleted, at which time any desired edits to the images and text
can be made before publishing the tutorial.

Once the tutorial is completed, the user can enter a com-
mand to terminate the tutorial builder application. The tuto-
rial can be saved as one or more files in which images and text
are provided in a way that a student or tutee can subsequently
open the tutorial and review the images and text to learn how
to use various features, or functionalities, of one or more
applications that are the subject of the tutorial. The tutorial
window can also be provided as a web page. The tutorial may
be useful, e.g., in training employees or students, in providing
product help or support, or in documentation. Furthermore,
animated tutorials can be created by producing a cursor ani-
mation between captured images, e.g., screenshots, and
including the text. The tutorial may be made available on a
network such as an intranet or the Internet for widespread
access.

FIG. 3 illustrates a flow chart of a method for editing
images in a tutorial builder application. The tutorial applica-
tion may allow the user to adjust the automatic editing that is
applied to each of the captured images, or to edit one or more
selected images. At block 300, a command is received from
the user to edit a selected image in the tutorial window, or to

10

15

20

25

30

35

40

45

50

55

60

65

8

change the editing generally. In response, at block 310, an
image-editing menu providing various editing options from
which the user can select is displayed on the user interface.
The user’s selections are received at block 320 via the menu,
and at block 330, the display of the selected image, or all of
the images, is updated in the tutorial window. That is, the
editing changes are applied to the selected image, or the
images generally. The user can then review the edited images
to ensure they are satisfactory and to make any further adjust-
ments, if desired. An image-editing menu such as provided in
FIG. 4 may be used.

FIG. 4 illustrates an example image-editing menu 400 for
use in a tutorial builder application, such as in the image
editing module 118. The menu 400 can be accessed by a pull
down menu or other control in the tutorial builder window, for
instance. Alternatively, the user may select one or more par-
ticular images in the tutorial and right click to cause the menu
400 to be displayed. The image-editing menu may allow the
user to set options such as whether to display the full user
interface screen in the tutorial, display only changed objects
and related parent objects, such as a new window and its
parent windows, or a new pull down menu and its parent
menus, or display only changed objects, but not any parent
objects, such as a new window but not its parent windows, or
a new pull down menu but not its parent menus. The term
“object” is meant to encompass any visually distinguishable
component that is displayed on the user interface. The image-
editing menu 400 may additionally allow the user to provide
afocus on a portion of the captured image by cropping out the
portion, e.g., displaying the focused portion by itself, while
eliminating the remaining, unfocussed portions, or by dis-
playing the focused portion with the remaining portions,
while de-emphasizing the remaining portions. Examples of
cropping and de-emphasizing and provided below.

The image-editing menu 400 may additionally allow the
user to choose to replace multi-option windows in the tutorial
after one of the options is selected. Multi-option windows
include, e.g., alert windows that prompt the user as to whether
or not they wish to carry out a command such as closing a
window. The tutorial can be made concise by automatically
including in the tutorial only the alert window that shows the
selected option rather than also including the alert window
prior to the selection. Examples are provided below.

The user can further designate, e.g., whether to apply the
edit selections to only a selected image, if appropriate, all
images in the tutorial, or selected and subsequently captured
images. Various other approaches will be apparent to those
skilled in the art for enabling a user to adjust the editing
options.

Moreover, preset layouts can be defined, e.g., by a com-
pany, school, or the like, into which the text and images are
formatted. The layouts can indicate that the images should
appear on the left hand side of the tutorial with text on the
right, provide a company logo on each page of the tutorial,
and so forth.

The following figures illustrate an example sequence of
user interface images and their capture into a tutorial accord-
ing to the invention. As mentioned, the invention can be
adapted for use in providing a tutorial for essentially any type
of application or applications.

FIG. 5 illustrates a desktop view of a user interface 500.
Such desktop views are well known per se and can include a
number of different controls, such as icons, which allow the
user to launch different programs/applications or access
resources on a computer. The desktop itself may also be
considered to be an application. For example, the icon entitled
“photos” 510 may launch an application for viewing and

US 9,183,752 B2

9

editing digital images. An icon entitled “Computer” 520
allows the user to access files stored on the computer. An icon
entitled “tutorial.py” 530 can be clicked on by the user using
a mouse or other pointing device to launch the tutorial appli-
cation. Once the tutorial application is launched, a tutorial
builder application window 600 (FIG. 6) may open on the
user interface 500, such as on a side of the user interface 500
or on a separate screen, if available, so that the user is still free
to interact with the desktop.

FIG. 6 illustrates a tutorial builder application window 600,
where a user enters a command to begin recording by pressing
anicon entitled “record” 610. The tutorial builder can capture
an image of the desktop in its current state to establish an
initial context for the tutorial. This capturing of an image is
also referred to as taking a screenshot. The tutorial builder
application window 600 may also include an icon 620 entitled
“create a web” page which, when selected by the user, outputs
the images and text of the tutorial to a preformatted web page,
e.g.,on alocal hard disk. The user can then edit the web page,
using any tool of their choosing, and/or upload it to the web.
The preformatted web page can be provided according to a
format that is selected by the user from among a number of
available formats.

FIG. 7 illustrates the tutorial builder application window
700, in which a screenshot of the desktop view 500 of FIG. 5
is automatically captured and displayed. Additionally, auto-
matically generated text is displayed next to the captured
image 500. For example, text such as “Start” 720 may be
displayed when the first image is captured. The text may be
generated by the text generator module 115 (FIG. 1) as dis-
cussed previously.

FIG. 8 illustrates the desktop view of the user interface 800,
where the user pulls down a first level of a menu 810. When
the user pulls down the menu, the event detector 154, such as
the accessibility toolkit, or a program that recognizes changes
in the user interface based on pixel values, such as the pixel
monitor 152, generates a corresponding signal. In response,
the tutorial builder application again automatically captures
the image of the user interface 800, including the menu 810.

FIG. 9 illustrates the desktop view of the user interface 900,
where the user selects a second level 910 of the menu 810 of
FIG. 8, and, further, selects amenu item entitled “Text Editor”
915, which launches the text editor application 140. In one
possible approach, the event detector 154 receives an event
reporting that a menu item has been clicked on. Using a
widget tree accessible through the accessibility toolkit, for
example, the tutorial builder figures out what screen area
contains the selected menu item and all its parent menus, if
any. In the present example, the menu 810 is a parent menu of
the menu 910. The tutorial builder application then captures
an image of the entire user interface 900 and the image editor
module 118 automatically edits the captured image based on
the previously set editing settings or criteria, e.g., as set by the
image-editing menu 400 of FIG. 4. For example, the captured
image may be edited by providing a focus on the portion of the
image that results in the detected event or the change in the
image. In the present example, this portion is the menu 910.
Additionally, the editing may include the parent menu 810 in
the focus. The focus can be provided by cropping out or
de-emphasizing background portions of the image that do not
include the menus 810 and 910, collectively shown at 920.
Furthermore, text can be automatically generated for use in
the tutorial as discussed.

FIG. 10 illustrates the tutorial builder application window
1000, in which a screenshot of the desktop view with the
pulled down menus of FIG. 9 is automatically captured, but
only the pulled down menus are displayed. Here, the back-

10

15

20

25

30

35

40

45

50

55

60

65

10

ground portions of the image are cropped out so that only the
parent menu 810, also referred to as a top-level or first-level
menu, and the child menu 910, also referred to as a second
level menu, are displayed in the tutorial, as shown by the
image 920. Additionally, the automatically generated text
1020 reads, “From the GNOME panel select Applications,
Accessories, Text Editor.” This text is generated by recogniz-
ing that the user interacted with a panel entitled “GNOME”,
pulled down a menu entitled “Applications” 1012, then
selected a menu item entitled “Accessories” 1014, causing the
second level menu to appear, then selected the “Text Editor”
item 915 in the second level menu.

Note that, in the present example, the image editing set-
tings were set so that the first and second level menus are
displayed together in the tutorial, e.g., as shown by the image
920, rather than displaying the first level menu in one image
in the tutorial, then displaying the first and second level
menus together in another image in the tutorial. This
approach avoids displaying intermediate steps in the tutorial
that are not needed for comprehension, thereby making the
tutorial more concise. However, it is also possible for the
editing settings to be set so that a separate image is displayed
in the tutorial for each new level of a menu or window, for
instance, which appears in the user interface.

FIG. 11 illustrates the desktop view of the user interface
1100, where a new, top level window 1150 has opened based
on the user’s selection of the menu item 915 from the second
level menu 910 of FIG. 9. The top level “Text Editor” window
1150, which is generated by the text editor application 140,
thus opens. The opening of the window 1150 may generate an
event or otherwise be recognized such as by pixel changes in
the interface 1100. In response, the tutorial builder captures
an image of the interface 1100, and applies the editing set-
tings to the captured image. For example, a focus may be
provided on the new window 1150 that generated an event by
de-emphasizing background region 1160 of the interface
1100, e.g., by darkening the rest of the screenshot. Text is
automatically generated based on the event type (“New Win-
dow”) and the title of the selected menu item (““Text Editor”)
915, which is a type of a control or widget.

FIG. 12 illustrates the tutorial builder application window,
in which a screenshot of the desktop view with the top level
window of FIG. 11 is automatically captured and displayed.
The tutorial builder application window 1200 displays the
edited image 1200, including the new window 1150 which is
focused on by de-emphasizing the background region 1160,
such as by darkening it. The darkening may not be apparent in
the figure. The automatically generated text 1230 reads “A
new window ‘Text Editor’ opens”. The image 1100 and text
1230 are provided at the top of the tutorial builder application
window 1200, while the previous images 500 and 920 and
text 1020 are moved down in the window 1200 and eventually
out of the window as new images are displayed. The user may
have the ability to resize the window 1200 and control the
resolution to thereby control the amount of information that is
displayed at a given time.

FIG. 13 illustrates the desktop view of the user interface
1300, where the user selects the “open” toolbar button 1310 in
the top-level window 1150 of FIG. 11. When the user clicks
the “open” toolbar button 1310, an event may be generated,
for instance, causing the tutorial builder to examine the acces-
sibility toolkit tree, thereby determining that the event
occurred on a button inside a window. In response to this
determination, the editing settings are applied to the image.
For example, the captured image may be cropped so that only
the window in which the selected button 1310 is located, e.g.,
the “Text Editor” window 1150, is displayed in the tutorial.

US 9,183,752 B2

11

Furthermore, the tutorial builder may highlight the selected
button 1310 by using the accessibility toolkit, for instance, to
determine the button’s on-screen location, and de-emphasize
the remainder of the window 1300, such as by darkening.

FIG. 14 illustrates the tutorial builder application window
1400, in which a screenshot of the desktop view with the
top-level window 1150 of FIG. 13 is automatically captured,
but only the top-level window 1150 is displayed. The auto-
matically generated text 1410 is “Click the ‘Open’ toolbar
item”. This text is generated by recognizing that a particular
type of a control, e.g., a toolbar item, with a particular label,
e.g., “Open”, was selected by the user by clicking a mouse.

FIG. 15 illustrates the desktop view of the user interface
1500, where a new, second level window 1350 has opened
based on selection of the “open” toolbar button 1310 in the
top level window 1150 of F1G. 13. The opening of the second
level window may result in a “New Window” event of which
the tutorial builder application is informed. Additionally, the
tutorial builder may determine that the window 1350 is a child
window, also referred to as a second or lower level window,
since it is associated with the parent, or first level, “Text
Editor” window. The tutorial builder applies the editing set-
tings, resulting, e.g., in cropping of the captured image in a
square or rectangle that includes only the parent window 1150
and the child window 1350. Contrast this with the opening of
the parent window 1150, as discussed in connection with FI1G.
1, where the entire user interface was included in the tutorial
1200 of FIG. 12. In either case, a context is provided for the
new, e.g., changed, portion of the image on the user interface.
The editing settings may also dictate that the child window
“Open File” 1350 be emphasized or highlighted by darkening
the rest of the screenshot. The window 1350 also includes a
button 1360 labeled “Open”, which is highlighted, e.g., as a
default rule, and a button 1370 labeled “Cancel”.

FIG. 16 illustrates the tutorial builder application window
1600, in which a screenshot of the desktop view with the top
level 1150 and second level windows 1350 of FIG. 15 is
automatically captured, but only the top level and second
level windows are displayed, as collectively shown by the
image 1610. The automatically generated text 1620 is “A new
window ‘Open File’ opens”. This text is generated by recog-
nizing that a particular type of a control, e.g., a window, with
a particular label, e.g., “Open File”, has opened on the inter-
face 1500.

FIG. 17 illustrates the desktop view of the user interface
1700, where the user selects the “Cancel” button 1370 in the
second level window 1350 of FIG. 15, thereby causing the
button 1370 to appear in highlighted form, while the highlight
is removed from the “Open” button 1360. When the user
clicks the “Cancel” button 1370, a corresponding event may
be produced, for instance. Similar to the case of the user
clicking the “Open” button 1310 in the window 1150 of FIG.
13, the tutorial application applies the editing settings to crop
the captured image to include only the window 1350 in which
the “Cancel” button 1370 is contained, and the area around
the button 1370 is de-emphasized. Note that it is not necessary
to include the parent window 1150 in the tutorial to provide a
context for the child window 1350 since this context was
previously established by the image 1610 in FIG. 16. How-
ever, it is possible to again include the parent window 1150 in
the tutorial to maintain the previous context.

FIG. 18 illustrates the tutorial builder application window
1800, in which a screenshot of the desktop view with the top
level and second level windows of FIG. 17 is automatically
captured, but only the second level window 1350, with the
highlighted “Cancel” button 1370, is displayed. The auto-
matically generated text 1810 is “Click the ‘Cancel’ Button”.

10

15

20

25

30

35

40

45

50

55

60

65

12

This text is generated by recognizing that a particular type of
acontrol, e.g., a button, with a particular label, e.g., “Cancel”,
has been selected by the user by clicking with a pointing
device.

FIG. 19 illustrates the desktop view of the user interface,
where the top level window 1150 remains and the second
level window 1350 is closed based on selection of the “Can-
cel” button 1370 in the second level window 1350 of FIG. 15.
The closing of the child window “Open File” 1350 may
produce a “Close Window” event, which the tutorial builder
application responds to by capturing the interface 1900 and
displaying the parent window 1150 to re-establish a context
for people reading the tutorial. As before, text can be autoge-
nerated, such as from the accessibility toolkit event tree.

FIG. 20 illustrates the tutorial builder application window
2000, in which a screenshot of the desktop view with the top
level window of FIG. 19 is automatically captured, but only
the top-level window 1150 is displayed. The automatically
generated text 2010 is “The window ‘Open File . . . ’ closes”.
This text is generated by recognizing that a particular type of
a control, e.g., a window, with a particular label, e.g., “Open
File”, has been closed.

FIG. 21 illustrates the desktop view of the user interface
2100, where the user types in text in the top-level window
1150 of FIG. 20. Specifically, the user types in some text
(“Hello World”) 2110 into a “text entry” control or widget. A
corresponding event may be produced by the text editor appli-
cation 140, which in turn is transmitted to the event detector
154, and provided from there to the tutorial builder applica-
tion 110, causing the tutorial builder application 110 to cap-
ture the user interface 2100, including the window 1150 in
which the text entry control is contained. Moreover, the image
editor module 118 edits the captured image by highlighting
the text entry control, e.g., highlighting the text, similar to the
highlighting of the “Cancel” button 1370 in the window 1350
(FIG. 18) or the “Open” button 1360 in the window 1350
(FIG. 16).

FIG. 22 illustrates the tutorial builder application window
2200, in which a screenshot of the desktop view with the top
level window of FIG. 21 is automatically captured, but only
the first level window 1150 with the typed in text 2110 is
displayed. The automatically generated text 2210 is “Type
‘Hello World*”. This text is generated by recognizing that a
particular type of a control, e.g., a text control, is used to
receive typed in text, e.g., “Hello World”, from the user.

FIG. 23 illustrates the desktop view of the user interface
2300, where the user pulls down a “File” menu 2310 from the
first level window 1150 of FIG. 21. This is analogous to the
case in FIG. 8 in which the menu 810 is pulled down. The
tutorial builder application may capture the image of the user
interface 2300 responsive to the appearance of the menu
2310, but delay editing and writing of the captured image to
the tutorial until a final menu item, e.g., a menu item that does
not result in a child menu being displayed, has been selected.
Or, the capturing of the image of the user interface 2300 may
be delayed until the final menu item has been selected.

FIG. 24 illustrates the desktop view of the user interface,
where the user selects the “quit” menu item 2410 from the
menu 2310 of the first level window 1150 of FIG. 23. In
response, the tutorial builder application captures the image
of'the user interface 2400, and edits the image by cropping the
screenshot to include only the menu 2310, while emphasizing
the selected menu item 2410 such as by darkening the rest of
the menu.

FIG. 25 illustrates the tutorial builder application window,
in which a screenshot of the desktop view with the first level
window, menu and selected menu item of FIG. 24 is auto-

US 9,183,752 B2

13

matically captured, but only the menu 2310 and selected
menu item 2410 are displayed. The automatically generated
text 2510 is “From the ‘File’ menu select ‘Quit’”. This text is
generated by recognizing that, in a particular type of a control,
e.g., amenu, with a particular label, e.g., “File”, a user selects
a particular menu item having the label “Quit”.

FIG. 26 illustrates the desktop view of the user interface
2600, where an alert window 2650, with a “save” button 2670
highlighted, is displayed based on selection of the “quit”
menu item 2410 in the menu 2310 of FIG. 25. When the new
child window 2650 with the label “Save Confirmation” pops
up, a corresponding event may be generated, for instance. In
response, the tutorial builder captures the image of the user
interface 2600 in a screenshot and edits the captured image
such as by cropping it to include both the parent window 1150
(“Text Editor”) and the child window 2650 (“Save Confirma-
tion”), and highlighting the “Save Confirmation” window
2650. Using the accessibility toolkit widget tree, for instance,
the tutorial builder determines that this is a special class of
window that allows the user to select from among multiple
options, e.g., “Close without Saving” at button 2660, “Can-
cel” at button 2665, or “Save” at button 2670. The special
class of window, which may be referred to as an “alert”
window, may be used, e.g., to allow the user to confirm a
command, or to obtain additional information for carrying out
a command, and may be handled differently in the way it is
provided in the tutorial and in the way the text is autogener-
ated, as described below.

FIG. 27 illustrates the tutorial builder application window
2700, in which a screenshot of the desktop view with the first
level window and alert window, with the “save” button high-
lighted, of FIG. 26 are automatically captured, but only the
first level window 1150 and alert window 2650, with the
“Save” button 2670 highlighted, are displayed. The automati-
cally generated text 2710 is “A ‘Save Confirmation” alert
appears”. Note the difference in text between this class of
window and other “new window” text messages discussed
above, such as the text “A new window ‘Text Editor’ opens”
1230 in FIG. 12. The text 2710 is generated by recognizing
that a particular type of a control, e.g., a window, with a
particular label, e.g., “Save Confirmation”, has opened.

FIG. 28 illustrates the desktop view of the user interface
2800, where the alert window 2650 of FIG. 26 with the “Close
without Saving” button 2660 is selected. When the button
2660 is selected by the user, a corresponding event is gener-
ated, for instance, enabling the tutorial builder to determine
that the window 2650 is of the class “alert”, and implementing
a special setting for taking screenshots of button presses
inside alert windows, discussed below.

FIG. 29 illustrates the tutorial builder application window
2900, in which a screenshot of the desktop view with the first
level window and alert window of FIG. 28 are automatically
captured, but only the first level window 1150 and alert win-
dow 2650, with the “Close without Saving” button 2660
highlighted, are displayed, in place of the corresponding dis-
play of FIG. 27. Specifically, the tutorial builder may replace
the previous screenshot in the tutorial since there is no need to
have a screenshot of the alert window, with a default button
highlighted, e.g., button 2670 (FIG. 26), in addition to a
screenshot of the alert window with another button, e.g.,
button 2660, highlighted (FI1G. 28). Thus, only the alert win-
dow with the button or other option that is selected by the user
is displayed in the tutorial, in place of the window with a
default button or option selected.

The automatically generated text 2910 is “A ‘Save Confir-
mation’ alert appears, click ‘Close without saving’”. This text
is generated by recognizing that, in a particular type of a

10

15

20

25

30

35

40

45

50

55

60

65

14

control, e.g., an alert window, with a particular label, e.g.,
“Save Confirmation”, a user selects a button having the label
“Close without saving”.

FIG. 30 illustrates the desktop view of the user interface
3000, where the top level window 1150 and alert window
2650 of FIG. 29 are removed based on selection of the “Close
without Saving” button 2660. The top level/parent window
“Text Editor” closes and the tutorial builder takes a screen-
shot of the entire desktop. The user interface 3000 is the same
as the interface 500 of FIG. 5. Note that the user interface
3000 includes a folder 3010 labeled “theme mockups”, as
discussed below.

FIG. 31 illustrates the tutorial builder application window
3100, in which a screenshot of the desktop view 300 of FIG.
30 is automatically captured and displayed. The automati-
cally generated text 3110 is “The window ‘Text Editor’
closes”. This text is generated by recognizing that a particular
type of a control, e.g., a window, with a particular label, e.g.,
“Text Editor”, has closed.

FIG. 32 illustrates the desktop view of the user interface
3200, where the “theme mockups” folder 3010 of FIG. 30 is
selected by the user. Specifically, the user may double click on
the folder 3010, resulting in the generating of an event. The
tutorial builder determines that the control generating the
event, e.g., the folder icon labeled “theme mockups™, is on the
desktop, and applies editing settings that indicate that, in this
situation, cropping of the captured image is not desired. This
is true since it is preferable to display the icon 3010 in the
tutorial in the context of the entire interface 3200 rather than
merely displaying the folder by itself. The editing may also
highlight the folder icon 3010 that generated the event by
darkening the rest of the screenshot in the tutorial.

FIG. 33 illustrates the tutorial builder application window
3300, in which a screenshot of the desktop view 3200 of FIG.
32 with the “theme mockups” folder 3010 selected is auto-
matically captured and displayed. The automatically gener-
ated text 3310 is “Double click ‘theme mockups’ on the
desktop”. This text is generated by recognizing that a control,
e.g., a folder, with a particular label, e.g., “theme mockups”,
has been selected, e.g., by double clicking on a pointing
device.

FIG. 34 illustrates the desktop view of the user interface
3400, where a new, top level “theme mockups” window 3450
has opened based on selection of the “theme mockups” folder
3010 of FIG. 32. The appearance of the window 3450 is
detected by the pixel monitor 152 or the event detector 154,
for instance, thereby causing the tutorial builder to display the
entire screenshot in the tutorial with the newly-opened win-
dow 3450 emphasized.

FIG. 35 illustrates the tutorial builder application window
3500, in which a screenshot of the desktop view of FIG. 34
with the “theme mockups” window 3450 is automatically
captured and displayed. Similar to the case in FIG. 12, where
the new window 1150 was displayed, the new window 3450 is
displayed with the entire interface 3400, with a focus on the
new window 3450. The automatically generated text 3510 is
“A new window ‘theme mockups’ opens”. This text is gener-
ated by recognizing that a control, e.g., a window, with a
particular label, e.g., “theme mockups”, has been opened.

Accordingly, it can be seen that the present invention pro-
vides a technique for automatically capturing screenshots on
a computer display to assist in building a tutorial, such as for
demonstrating the functionality of one or more applications.
The invention can advantageously span multiple applica-
tions, e.g., to build a tutorial showing a user entering text in a
text editor application, saving the file, and then copying the
file using a file manager application.

US 9,183,752 B2

15

Moreover, the user can click on any of the autogenerated
textual descriptions and edit them to provide their own text
that is may better describe what has occurred in the displayed
images. For example, instead of the text “A new window Text
Editor’ opens” (FIG. 12), the user might type the text “The
window for your text editor opens, allowing you to type any
text notes you want in this window”.

Furthermore, any of the images provided in the tutorial can
be deleted, e.g., by right clicking on them to bring up a menu
including a “delete” option, or by providing a “delete” button
next to each image in the tutorial. This allows the user who is
building the tutorial to remove images that are not believed to
be necessary or helpful.

The tutorial builder application may further be configured
such that pressing the “print screen” key on the keyboard
causes the tutorial builder to take a screenshot, in case an
important event is not automatically detected. No text will be
generated though, if no event is available.

Additionally, if the user does not like the particular editing,
such as cropping or highlighting, applied to an image in the
tutorial, the user can access an editing menu such as the menu
400 of FIG. 4, e.g., by right clicking on the image. As men-
tioned, the tutorial builder can record the entirety of each
image on the user interface to enable the user to access the
entire user interface, e.g., even if cropping is initially applied.
Furthermore, the user can choose a particular “zoom level”
later when the user reviews the results; that is, the editing can
be changed retroactively. For example, at the end of recording
a tutorial, assume the user looks back at the tutorial window
1000 of FIG. 10, and desires to have the entire desktop dis-
played instead of just the menus 920. This can be achieved by,
e.g., right clicking on the image of the menus 920, thereby
bringing up a menu that provides a variety of possible crop-
ping options, such as “Whole Desktop”, “Menu with Parent
Window”, and “Menu Only” (the automatically chosen crop-
ping). The menu may further provide thumbnail images of the
desktop with the different options applied. Or, an “edit” but-
ton can be provided next to each image in the tutorial.

In addition to allowing the specification of manual crop-
ping parameters and other editing settings, the user can also
select between alternative automatically generated edits of
the captured image. For example, a drop down menu could
show several alternative automatically generated edited ver-
sions, allowing the user to select a different version to use.
The drop down menu could allow selection between: a shot
cropped to the button generating the event, a shot cropped to
the button’s parent window with the button emphasized, a
shot of the whole screen with the button emphasized, a shot of
the whole screen, and so forth.

Moreover, while an accessibility toolkit, such as GTK+/
Linux, was mentioned for use in observing events generated
by any application on the system (e.g., button clicks, new
windows, drag and drop events, check boxes, menus, and so
forth), there are other ways of implementing the invention, as
mentioned, such as by preparing a program that monitors the
screen output, e.g., pixel values, and cropping to any screen
areas that change so that the changed areas are displayed in
the tutorial. Thus, any technique for detecting when the
appearance of the user interface changes and automatically
taking screenshots of the user interface to build a tutorial may
be used.

The invention has been described herein with reference to
particular exemplary embodiments. Certain alterations and
modifications may be apparent to those skilled in the art,
without departing from the scope of the invention. The exem-
plary embodiments are meant to be illustrative, not limiting of
the scope of the invention.

20

40

45

50

16

What is claimed is:

1. A method of building a tutorial comprising:

monitoring, by a processor, an application while a user is

utilizing an input device to interact with the application
to build the tutorial;

determining, by the processor, during the monitoring that

the application displays a window that allows the user to
select from a plurality of options;

automatically capturing, by the processor, during the

monitoring, an image that is generated by the monitored
application in response to detecting selection by the user
of an option from the plurality of options in the window
of the monitored application by receiving input from the
input device directed to the monitored application,
wherein capturing comprises storing an image file to a
designated location, the image file comprising the image
generated by the application displaying the window with
the option visually identified;

editing, by the processor and without editing directions

from the user, the image in view of editing settings to
provide an edited image, wherein editing the image
comprises identifying a portion of the image that was
captured that is to be displayed with a focus in the
tutorial, and at least one of cropping out a remaining
portion of the image that was captured or de-emphasiz-
ing the remaining portion of the image that was cap-
tured;

automatically generating, by the processor, human-read-

able text that describes the edited image that was auto-
matically captured, wherein the human-readable text is
not part of the image that was automatically captured;
and

building, by the processor, the tutorial using the user inter-

action, the human-readable text, and at least a portion of
the edited image.

2. The method of claim 1, further comprising:

displaying the tutorial while displaying the image.

3. The method of claim 1, wherein the user utilizes the
input device to interact with a plurality of applications, the
method further comprising:

displaying images that are generated by the plurality of

applications;

automatically capturing the images displayed; and

building the tutorial using at least a portion of the captured

images.

4. The method of claim 1, further comprising:

displaying a control that allows the user to direct that the

tutorial be outputted as a preformatted web page accord-
ing to a format that is selected by the user from among a
plurality of available formats.

5. The method of claim 1, further comprising:

enabling the user to select the editing settings.

6. The method of claim 1, further comprising:

displaying a control that allows the user to remove an

undesired captured image from the tutorial.

7. The method of claim 1, further comprising:

displaying a control that allows the user to manually select

one of a plurality of alternative automatically edited
versions of the captured image for use in the tutorial.

8. The method of claim 1, further comprising:

displaying a control that allows the user to input text to be

associated with the at least a portion of the captured
image in the tutorial.

9. The method of claim 1, further comprising:

displaying a control that allows the user to edit the gener-

ated human-readable text.

US 9,183,752 B2

17

10. A program storage device comprising instructions to
cause a processor to perform the operations of claim 1.

11. A method of building a tutorial comprising:

monitoring, by a processor, an application while a user is

utilizing an input device to interact with the application
to build the tutorial;
detecting, by the processor, during the monitoring, a
change in images that are generated by the monitored
application in response to the user interaction with the
monitored application by receiving input from the input
device directed to the monitored application;

capturing, by the processor, one of the images responsive to
the detecting of the change, wherein capturing com-
prises storing an image file to a designated location, the
image file comprising the one of the images generated
by the application;

editing, by the processor, without editing directions from

the user, the one of the images that was captured, to
provide an edited image, wherein editing comprises
identifying a changed portion of the one of the images
that was captured that is to be displayed with a focus in
the tutorial, and at least one of cropping out a remaining
portion of the one of the images that was captured or
de-emphasizing the remaining portion of the one of the
images that was captured;

storing a second image file to the designated location, the

second image file comprising the edited image; and
building, by the processor, the tutorial using the user inter-
action and the second image file.

12. The method of claim 11, wherein the change is depen-
dent on the user interaction with the at least one application.

13. The method of claim 11, wherein the change is detected
by monitoring pixel values in the images.

14. A program storage device comprising instructions to
cause a processor to perform the operations of claim 11.

15. A method of building a tutorial comprising:

monitoring, by a processor, an application while a user is

utilizing an input device to interact with the application
to build the tutorial;

detecting, by the processor, during the monitoring, an event

that is generated by the monitored application in
response to the user interaction with the monitored
application by receiving input from the input device
directed to the monitored application;

capturing, by the processor, responsive to the detecting of

the event, an image that is generated by the monitored
application, wherein capturing comprises storing an
image file to a designated location, the image file com-
prising the image generated by the monitored applica-
tion;

editing, by the processor, without editing directions from

the user, the image that was captured to provide an edited
image, wherein editing comprises identifying a portion
of'the captured image associated with the event that is to
be displayed with a focus in the tutorial, and at least one
of cropping out a remaining portion of the captured
image or de-emphasizing the remaining portion of the
captured image;

storing a second image file to the designated location, the

second image file comprising the edited image; and
building, by the processor, the tutorial using the user inter-
action and the second image file.

16. The method of claim 15, wherein the event comprises at
least one of: (a) a window opening and a window closing, (b)
the user selecting on a control, (c) the user selecting an item in
amenu, (d) the user entering text into a control, (¢) at least one
of'a window being moved, a window being resized, a window

10

15

20

25

30

35

40

45

50

55

60

65

18

being maximized or a window being minimized, or (f) at least
one of a control or an icon being dragged from one point to
another.

17. The method of claim 15, wherein the event is detected
by an accessibility toolkit.

18. The method of claim 15, further comprising:

automatically generating human-readable text, by the pro-

cessor, responsive to the detecting of the event, wherein
the human-readable text describes the captured image
for use in the tutorial, and wherein the human-readable
text is not part of the at least one captured image.

19. The method of claim 15, further comprising:

automatically generating human-readable text describing

the event to accompany the edited image in the tutorial.

20. A program storage device comprising instructions to
cause a processor to perform the operations of claim 15.

21. A method of building a tutorial comprising:

monitoring, by a processor, an application while a user is

utilizing an input device to interact with the application,
for use in building the tutorial;

automatically capturing, by the processor, during the

monitoring, an image that is generated by the monitored
application in response to the user interaction with the
monitored application by receiving input from the input
device directed to the monitored application, wherein
capturing comprises storing an image file to a designated
location, the image file comprising the image generated
by the at least one application;

automatically editing, by the processor, without editing

directions from the user, the captured image to provide
an edited image by identifying a portion of the captured
image that is to be displayed with a focus in the tutorial,
and at least one of cropping out a remaining portion of
the captured image or de-emphasizing the remaining
portion of the captured image;

storing a second image file to the designated location, the

second image file comprising the edited image; and
building, by the processor, the tutorial using the user inter-
action and at least a portion of the second image file.

22. The method of claim 21, wherein the providing a focus
on a portion of the captured image comprises determining a
changed portion of the captured image, and displaying the
changed portion with a focus in the tutorial.

23. The method of claim 21, wherein the automatically
editing comprises:

detecting a control with which the user interacted in the

captured image; and

determining a window containing the control in the cap-

tured image; and

cropping to emphasize the window containing the control

in the captured image when building the tutorial.

24. The method of claim 21, wherein the automatically
editing comprises:

providing a focus on a portion of the captured image from

which an event originated.

25. The method of claim 21, wherein the de-emphasizing
comprises at least one of: (a) darkening the remaining por-
tion, (b) desaturating at least one color of the remaining
portion, (¢) blurring the remaining portion, or (d) overlaying
a partially transparent shape over the remaining portion.

26. The method of claim 21, wherein the automatically
editing comprises determining a portion of the captured
image that is to be displayed with a focus in the tutorial.

27. The method of claim 26, wherein the portion of the
captured image that is to be displayed with a focus in the
tutorial comprises at least one of a new window or a new
menu.

US 9,183,752 B2

19

28. The method of claim 26, wherein the portion of the
captured image that is to be displayed with a focus in the
tutorial comprises at least one of: (a) a parent menu, when a
child menu is closed, or (b) a parent window, when a child
window is closed.

29. The method of claim 21, further comprising:

displaying a control that allows the user to manually edit

the edited image.

30. A program storage device comprising instructions to

cause a processor to perform the operations of claim 21.

#* #* #* #* #*

5

10

20

